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ABSTRACT

Let S be a set of n sites hosen independently from a uniform distribution

in a ube in 3�dimensional Eulidean spae. In this paper, work by Bentley,

Weide and Yao is extended to show that the Voronoi diagram for S has an

expeted O(n) number of faes. A onsequene of the proof of this result is

that the Voronoi diagram for S an be onstruted in expeted O(n) time.

1. INTRODUCTION

Consider a set S = fp

1

; : : : ; p

n

g of n sites in d�dimensional Eulidean spae

E

d

. The Voronoi diagram for S is a sequene V (p

1

), : : : , V (p

n

) of onvex

polyhedra overing E

d

, where for eah i, i = 1; : : : ; n, V (p

i

) is the Voronoi

polyhedron of p

i

relative to S, i. e. the set of all points x in the spae suh that

p

i

is as lose to x as is any other site in S.

The Voronoi diagram is an important geometrial onept that is used for

solving a large number of problems in many areas. Aordingly, several al-

gorithms have been devised and implemented for onstruting it in two and

higher dimensions (see Bentley, Weide and Yao (1980), Bowyer (1981), Bros-

tow, Dussault and Fox (1978), Brown (1979), Finney (1979), Green and Sibson

(1978), Lee and Shahter (1980), Maus (1984), Ohya, Iri and Murota (1984),

Seidel (1986), Shamos (1978), Shamos and Hoey (1975), Tanemura, Ogawa and

Ogita (1983), Watson (1981), Witzgall (1973b)), and many of its statistial

and geometrial properties have been derived (see Bentley, et al. (1980), Klee

(1980), Lawson (1977), Lee and Shahter (1980), Miles (1970), Pashinger

(1982), Preparata (1977), Seidel (1982), Shamos (1978), Shamos and Hoey

(1975), Witzgall (1973a)).
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In this paper, we further develop the work by Bentley, Weide and Yao

(1980) that relates to the expeted omplexity of Voronoi diagrams. Given

a set S of n sites hosen independently from a uniform distribution in a

d�dimensional hyperube, Bentley, et al. show that with the exeption of

at most an expeted O(n

1�1=d

� logn) number of polyhedra, eah polyhedron

in the Voronoi diagram for S has an expeted onstant number of faes. With

m de�ned as the largest integer less than or equal to n

1=d

, i. e. the oor of

n

1=d

, Bentley, et al. �rst divide the hyperube into m

d

equal-sized ells. Given

 > 0 and de�ning LG(n) as the oor of  � logn, where log denotes the natu-

ral logarithm, Bentley, et al. then show that for eah site p in S the expeted

number of faes of V (p) is onstant if p is not onstained in any of the out-

ermost LG(n) layers of ells of the hyperube. However, Bentley, et al. leave

unlear how to ompute the expeted omplexity of the Voronoi diagram for

S due to the Voronoi polyhedra of the sites in the outermost LG(n) layers of

ells of the hyperube.

In what follows, we extend the work by Bentley, et al. to show that in

3�dimensional Eulidean spae, O(n

2=3

� ( � logn)

4

) is an upper bound for

the expeted number of faes of the Voronoi diagram for S that are also faes

of Voronoi polyhedra of sites in the outermost LG(n) layers of ells of the

ube. This result and those in Bentley, et al. (1980) then imply that the

expeted number of faes of the Voronoi diagram for the n sites is O(n).

Aordingly, we onjeture that in E

d

, for �xed d > 3, similar results hold for

(d� 1)�dimensional faes or faets, i. e. O(n

1�1=d

� ( � logn)

d+1

) is an upper

bound for the expeted number of faets of the Voronoi diagram for S that are

also faets of Voronoi polyhedra of sites in the outermost LG(n) layers of ells

of the hyperube, and O(n) is the expeted number of faets of the Voronoi

diagram for the n sites.

2. TERMINOLOGY

Let S = fp

1

; : : : ; p

n

g be a set of n points in E

3

hosen independently from a

uniform distribution in a ube R. In what follows, a point in E

3

will be alled

a site if and only if it belongs to S. With m de�ned as the oor of n

1=3

, assume

as in Bentley, et al. (1980) that R has been divided into m

3

equal-sized ells.

Given a site q, de�ne the 1

st

layer of ells that surrounds q as the olletion

of ells that ontain q. Indutively, given k � 1, assume that the k

th

layer of

ells that surrounds q has been de�ned. De�ne the (k + 1)

th

layer of ells that

surrounds q as the olletion, possibly empty, of ells that have one or more

points in ommon with ells in the k

th

layer, and that do not belong to the

�rst k layers.

Let lell and vell represent, respetively, the length and volume of eah

ell.
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Given numbers , 

0

, 

00

, 0 <  � 

0

, 

00

� 1, de�ne LG(n) and LG

0

(n) as the

oors of  � logn and 

0

� logn, respetively, and assume n is large enough so

that LG(n) > 2 and 2

3=2

� 

00

� LG

0

(n) � 2

�1

� n

1=3

.

Let

^

k denote the largest integer k for whih

2

k=2

� 

00

� LG

0

(n) � 2

�1

� n

1=3

:

It follows from the assumptions on n that

^

k � 3.

Set LG

0

(n) equal to LG(n), and LG

k

(n) equal to LG

0

(n) for eah k,

k = 1; : : : ;

^

k � 2.

Let f

i

, i = 1; : : : ; 6, represent the faets of R, and let � denote [

6

i=1

f

i

, i. e.

the boundary of R.

Given a point x in E

3

and a subset W of E

3

, de�ne dist(x;W ) as the

minimum value of jjx�wjj for w inW , where jj�jj represents the 3�dimensional

Eulidean norm.

From the assumptions on n, several nonempty subsets of R an be de�ned

as follows:

R

�1

� fx 2 R : dist(x;�) � lell � LG(n)g:

R

0

� fx 2 R : lell � 2 � dist(x;�) < lell � LG(n)g:

R

^

k

� fx 2 R : dist(x;�) < lell � 2

�

^

k+2

g:

For eah k, k = 1; : : : ;

^

k � 1,

R

k

� fx 2 R : lell � 2

�k+1

� dist(x;�) < lell � 2

�k+2

g:

For eah i, k, i = 1; : : : ; 6, k = 0; : : : ;

^

k � 2,

R

i

k

� fx 2 R

k

: dist(x; f

j

) � lell � 2

k=2

� 

00

� LG

k

(n); j = 1; : : : ; 6; j 6= ig:

It follows from these de�nitions that the sets R

k

, k = �1; : : : ;

^

k, are pair-wise

disjoint nested regions of the ube R, and

R = [

^

k

k=�1

R

k

:

Finally, de�ne R

�2

, a possibly empty subset of R, as follows:

R

�2

� fx 2 R : dist(x;�) � lell � (1 + 

00

) � LG(n)g:

3



The signi�ane of these regions as it relates to our purposes an be sum-

marized as follows. R

�1

is essentially that region of the ube R obtained by

subtrating the outermost LG(n) layers of ells of R from R. From Bentley,

et al. (1980), the Voronoi polyhedron of a site in R

�1

is of expeted on-

stant omplexity. R

0

is essentially that region of R obtained by subtrating

from the outermost LG(n) layers of ells of R the outermost two layers. R

k

,

k = 1; : : : ;

^

k, are regions of R whose union is essentially that region of R om-

posed of the outermost two layers of ells of R, and whose thiknesses orre-

spond to the terms of the geometri series expanded to the �rst

^

k � 1 terms

together with the remainder. R

i

k

, i = 1; : : : ; 6, k = 0; : : : ;

^

k � 2, are subsets

of R

k

, k = 0; : : : ;

^

k � 2, respetively, de�ned in suh a way that due to their

positions relative to the boundary of R and the geometri series aspet of R

k

,

k = 1; : : : ;

^

k � 2, for a properly seleted value of 

00

the expeted omplexity

of the Voronoi diagram for S due to the Voronoi polyhedra of sites in these

regions is linear. They are also de�ned in suh a way that due to the de�ni-

tions of

^

k, R

^

k�1

and R

^

k

, and the geometri series aspet of R

k

, k = 1; : : : ;

^

k,

the expeted number of sites in [

^

k

k=0

R

k

n [

6

i=1

[

^

k�2

k=0

R

i

k

is small enough that it

does not a�et the linearity of the overall expeted omplexity of the diagram

even under the worst possible irumstanes (see Setion 3). Finally, R

�2

is a

subset of R

�1

de�ned in suh a way that sites in this region are highly unlikely

to have Voronoi neighbors in the outermost LG(n) layers of ells of R while

R

�1

nR

�2

is a region of R essentially omposed of O(LG(n)) ontiguous layers

of ells of R.

For eah faet f of R, let H(f) represent the plane that ontains f , and

for eah site q, let T

f

(q) represent the point in f that is the perpendiular

projetion of q onto f .

Given i, k, 1 � i � 6, 0 � k �

^

k� 2, and a site q in R

i

k

, let v, v

0

and v

00

be

verties of R in f

i

for whih v

0

� v is perpendiular to v

00

� v, and for eah j,

j = 0; : : : ; 8, de�ne a point t

j

in H(f

i

) by

t

j

� T

f

i

(q) + (v

0

� v) � os(j�=4) + (v

00

� v) � sin(j�=4):

In addition, for eah j, j = 1; : : : ; 8, let O

j

be the otant in H(f

i

) that is the

onvex hull of the rays T

f

i

(q)

~

t

j�1

and T

f

i

(q)

~

t

j

, and say that O

j

, j = 1; : : : ; 8,

are the otants assoiated with q. Finally, if within the �rst 2

k=2

� LG

k

(n) layers

of ells that surround q, for eah j, j = 1; : : : ; 8, there exists a site q

j

suh that

dist(q

j

; f

i

) < lell � 2

�k

and the ray q~q

j

intersets O

j

, say that q is otant-losed

and that q

j

, j = 1; : : : ; 8, render q otant-losed.

Given i, k, q, v, v

0

, v

00

as above, let v

000

be a vertex of R for whih v

000

� v is

perpendiular to v

0

� v and v

00

� v, and for eah j, j = 0; : : : ; 8, and eah m,
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m = 0; : : : ; 3, de�ne a point r

jm

by

r

jm

� q + ((v

0

� v) � os(j�=4) + (v

00

� v) � sin(j�=4)) � sin(m�=4)

+ (v

000

� v) � os(m�=4):

In addition, for eah j, j = 1; : : : ; 8, and eah m, m = 1; 2; 3, let U

jm

be the

one that is the onvex hull of the rays q~r

j�1;m�1

, q~r

j;m�1

, q~r

j�1;m

, and q~r

jm

,

and say that U

jm

, j = 1; : : : ; 8, m = 1; 2; 3, are the ones assoiated with q.

Finally, if within the �rst 2

k=2

� LG

k

(n) layers of ells that surround q, for eah

j, j = 1; : : : ; 8, and eah m, m = 1; 2; 3, there exists a site s

jm

, s

jm

6= q, suh

that s

jm

belongs to U

jm

, say that q is one-losed and that s

jm

, j = 1; : : : ; 8,

m = 1; 2; 3, render q one-losed.

Given q as above, say that q is losed if it is otant-losed and one-losed.

As it will be shown in Setion 3, Voronoi polyhedra of losed sites are of

expeted omplexity aeptable for our purposes.

Given i, k, q as above, de�ne C

f

i

(q) and C(q) as the losed half-spaes

that ontain T

f

i

(q) and q, respetively, and that are determined by the plane

parallel to H(f

i

) that ontains (T

f

i

(q) + q)=2. De�ne S

f

i

(q) as the subset of S

for whih a site p 2 S

f

i

(q) if and only if V (p)\V (q)\C

f

i

(q) 6= ;, and S(q) as

the subset of S for whih a site p 2 S(q) if and only if V (p)\V (q)\C(q) 6= ;.

Finally, given sites p and q, say that p is a Voronoi neighbor relative to S

of q if V (p) and V (q) have a faet in ommon.

3. RESULTS

In this setion, based on the terminology developed in Setion 2, we prove the

following theorem whih is the main result of this paper.

Theorem. O(n

2=3

� ( � logn)

4

) is an upper bound for the expeted number of

faes of the Voronoi diagram for S that are also faes of Voronoi polyhedra of

sites in R nR

�1

.

The proof of this theorem onsists of partitioning the ube into the regions

de�ned in Setion 2 and then omputing where neessary the expeted number

of Voronoi neighbor pairs within and between these regions. It requires some

preliminary results whih we present in the form of propositions. In the �rst

two propositions it is essentially shown that Voronoi polyhedra of losed sites

are of expeted omplexity aeptable for our purposes.
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Proposition 1. Given i, k, 1 � i � 6, 0 � k �

^

k � 2, a site q in R

i

k

, and

otants and sites O

j

, q

j

, j = 1; : : : ; 8, suh that O

j

, j = 1; : : : ; 8, are the o-

tants assoiated with q, and q

j

, j = 1; : : : ; 8, render q otant-losed, if q

0

is a

site suh that for eah j, j = 1; : : : ; 8, jjq

0

� qjj >

p

2 jjq

0

j

� qjj, where q

0

j

is the

intersetion of q~q

j

and O

j

, then q

0

62 S

f

i

(q).

Proof. Let q

0

be one suh site, and de�ne J

0

as the plane that perpendiularly

bisets the line segment [q

0

; q℄, and C

0

as the open half-spae determined by J

0

that ontains q. We show that C

0

ontains V (q) \ C

f

i

(q), so that q

0

62 S

f

i

(q).

Assume, without any loss of generality, that q

0

is in f

i

, T

f

i

(q) 6= q

0

j

, for eah

j, j = 1; 2, T

f

i

(q)~q

1

0

6= T

f

i

(q)~q

2

0

, and q

0

is in the onvex hull of T

f

i

(q)~q

1

0

and

T

f

i

(q)~q

2

0

.

Let J

0

1

and J

0

2

be the planes that are the perpendiular bisetors of the line

segments [q

0

1

; q℄ and [q

0

2

; q℄, respetively. Let B be the region that is the in-

tersetion of C

f

i

(q) and the losed half-spaes determined by J

0

1

and J

0

2

that

ontain q. We show B is the onvex hull of a region K

0

and a ray ~u

0

, both of

whih lie in C

0

. Sine C

0

is onvex, and B ontains V (q) \ C

f

i

(q), the result

then follows.

To this end, let H

0

be the plane that ontains (T

f

i

(q) + q)=2 and is parallel to

H(f

i

); let H

00

be the plane that ontains q and is parallel to H(f

i

); let q

00

, q

00

1

,

q

00

2

be the perpendiular projetions onto H

00

of q

0

, q

0

1

, q

0

2

, respetively; let h

0

,

h

0

1

, h

0

2

be the lines that are the intersetions of H

0

with J

0

, J

0

1

, J

0

2

, respetively;

and let h

00

, h

00

1

, h

00

2

be the lines in H

00

that perpendiularly biset [q

00

; q℄, [q

00

1

; q℄,

[q

00

2

; q℄, respetively.

Let q̂ be the perpendiular projetion of q onto H

0

. De�ne K

0

as the inter-

setion of the half-planes in H

0

determined by h

0

1

and h

0

2

that ontain q̂, and

K

00

as the intersetion of the half-planes in H

00

determined by h

00

1

and h

00

2

that

ontain q.

In order to show that C

0

� K

0

, we �rst prove that jjq

00

� qjj >

p

2 jjq

00

j

� qjj for

eah j, j = 1; 2. To this end, for eah j, j = 1; 2, we have

jjq

00

� qjj

2

+ jjq

0

� q

00

jj

2

= jjq

0

� qjj

2

> 2 jjq

0

j

� qjj

2

= 2 (jjq

00

j

� qjj

2

+ jjq

0

j

� q

00

j

jj

2

)

= 2 jjq

00

j

� qjj

2

+ 2 jjq

0

j

� q

00

j

jj

2

:

But jjq

0

� q

00

jj equals jjq

0

j

� q

00

j

jj for eah j, j = 1; 2, so that

jjq

00

� qjj

2

> 2 jjq

00

j

� qjj

2

+ jjq

0

j

� q

00

j

jj

2

;

for eah j, j = 1; 2, and the inequalities follow.

Sine q

0

1

and q

0

2

belong to the ontiguous otants O

1

and O

2

, respetively, it
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follows that h

00

does not interset K

00

. But by similar triangles, h

00

, h

00

1

, h

00

2

are

the perpendiular projetions onto H

00

of h

0

, h

0

1

, h

0

2

, respetively. Thus, K

00

is

the perpendiular projetion of K

0

onto H

00

, and therefore, h

0

an not interset

K

0

, whih shows C

0

ontains K

0

.

In order to obtain ~u

0

, let H

�

be the plane that ontains q, q

0

1

, and q

0

2

; let

C

�

be the losed half-spae determined by H

�

that ontains T

f

i

(q); let w

0

be

the line that is the intersetion of the planes J

0

1

and J

0

2

; let J

�

be the plane

that ontains q and q

0

, and that is perpendiular to H

�

; and let w

00

be the

perpendiular projetion onto J

�

of w

0

.

Sine w

0

is perpendiular to H

�

, so is w

00

, and sine from the de�nition of q

0

,

q

0

is not in C

�

, we must have that w

00

ontains a ray ~u

00

that lies ompletely in

C

0

\ C

�

\ C

f

i

(q). Therefore, from the de�nition of w

00

, it follows that w

0

must

ontain a ray ~u

0

that is also ontained in C

0

\ C

�

\ C

f

i

(q).

Sine B is learly the onvex hull of K

0

and ~u

0

, the proof is now omplete.

Proposition 2. Given i, k, 1 � i � 6, 0 � k �

^

k � 2, and a site q in R

i

k

,

if q is losed then for some onstant M > 0 independent of q, i, k and n, the

smallest number of ontiguous layers of ells that surround q and ontain eah

Voronoi neighbor of q is bounded above by M � 2

k=2

� LG

k

(n).

Proof. Let O

j

, j = 1; : : : ; 8, be otants assoiated with q, let q

j

, j = 1; : : : ; 8,

be sites that render q otant-losed, and let s

jm

, j = 1; : : : ; 8, m = 1; 2; 3, be

sites that render q one-losed.

Using arguments similar to those developed in Bentley, et al. (1980), it an be

shown that the existene of the sites s

jm

, j = 1; : : : ; 8, m = 1; 2; 3, implies that

for some onstant M

1

> 0 independent of q, i, k and n, the smallest number of

ontiguous layers of ells that surround q and ontain S(q) is bounded above

by M

1

� 2

k=2

� LG

k

(n).

We show a similar result for S

f

i

(q).

For eah j, j = 1; : : : ; 8, dist(q

j

; f

i

) < lell � 2

�k

. Thus, by similar triangles,

sine q is ontained in R

k

so that dist(q; f

i

) � lell � 2

�k+1

, we must have that

for eah j, j = 1; : : : ; 8, jjq

0

j

� qjj � 2 jjq

j

� qjj, where q

0

j

is the intersetion of

q~q

j

and O

j

.

Thus, if q

0

is a site suh that for eah j, j = 1; : : : ; 8, jjq

0

� qjj > 2

p

2 jjq

j

� qjj

then for eah j, j = 1; : : : ; 8, jjq

0

� qjj >

p

2 jjq

0

j

� qjj, and by Proposition 1,

q

0

62 S

f

i

(q).

Therefore, sine for eah j, j = 1; : : : ; 8, q

j

is also ontained in the �rst 2

k=2

�

LG

k

(n) layers of ells that surround q, it follows that for some onstantM

2

> 0

independent of q, i, k and n, the smallest number of ontiguous layers of ells

that surround q and ontain S

f

i

(q) is bounded above by M

2

� 2

k=2

� LG

k

(n).

The proof of the proposition is now omplete sine the union of S(q) and S

f

i

(q)

ontains eah Voronoi neighbor of q.

7



In the next proposition it is shown that the probability that a site is not

losed is very small and uniform for all sites to whih the de�nition of a losed

site applies.

Proposition 3. Given i, k, 1 � i � 6, 0 � k �

^

k � 2, and a site

q in R

i

k

, there exist positive onstants M

1

and M

2

independent of q, i, k

and n, suh that the probability that q is not losed is bounded above by

M

1

� exp(�M

2

� (LG

k

(n))

2

), where exp is the exponential funtion.

Proof. Let O

j

, j = 1; : : : ; 8, be the otants assoiated with q, and let U

jm

,

j = 1; : : : ; 8, m = 1; 2; 3, be the ones assoiated with q.

For eah j, j = 1; : : : ; 8, de�ne O

0

j

as the subset of R for whih a point

p 2 O

0

j

if and only if p is within the �rst 2

k=2

� LG

k

(n) layers of ells that sur-

round q, dist(p; f

i

) < lell � 2

�k

, and q~p intersets O

j

. In addition, for eah j,

j = 1; : : : ; 8, and eah m, m = 1; 2; 3, de�ne U

0

jm

as the subset of R for whih

a point p 2 U

0

jm

if and only if p is within the �rst 2

k=2

� LG

k

(n) layers of ells

that surround q, and p is in U

jm

.

From the de�nition of R

i

k

and sine 

00

� 1, the volume of [

8

j=1

O

0

j

is then

approximately equal to

(2 � 2

k=2

� LG

k

(n))

2

� (2

�k

) � vell = (4 � 2

k

� (LG

k

(n))

2

) � (2

�k

) � vell

= 4 � (LG

k

(n))

2

� vell;

so that for eah j, j = 1; : : : ; 8, the volume of O

0

j

is approximately equal to

(1=8) � 4 � (LG

k

(n))

2

� vell = (1=2) � (LG

k

(n))

2

� vell:

Thus, a positive onstant M

2

exists, independent of q, i, k and n, suh that

for eah j, j = 1; : : : ; 8, M

2

� (LG

k

(n))

2

� vell is a lower bound for the volume

of O

0

j

.

Therefore, sine for eah j, j = 1; : : : ; 8, eah m, m = 1; 2; 3, and eah h,

h = 1; : : : ; 8, the volume of U

0

jm

is larger than the volume of O

0

h

, it follows,

using arguments developed in Bentley, et al. (1980), that

(8 + 8 � 3) � exp(�M

2

� (LG

k

(n))

2

) = 32 � exp(�M

2

� (LG

k

(n))

2

)

is an upper bound for the probability that at least one of O

0

j

, j = 1; : : : ; 8,

U

0

jm

, j = 1; : : : ; 8, m = 1; 2; 3, does not ontain a site.

Thus, by settingM

1

equal to 32, the proof of the proposition is then omplete.

In the next four propositions it is shown that due to the positions of R

i

k

,

i = 1; : : : ; 6, k = 0; : : : ;

^

k � 2, relative to the boundary of R and the geomet-

ri series aspet of R

k

, k = 1; : : : ;

^

k � 2, for a properly seleted value of 

00

8



the Voronoi polyhedra of sites in R

i

k

, i = 1; : : : ; 6, k = 0; : : : ;

^

k � 2, are of a-

eptable expeted omplexity. It is also shown that due to the geometri

series aspet of R

k

, k = 1; : : : ;

^

k, and the de�nitions of

^

k, R

^

k�1

, R

^

k

, and R

i

k

,

i = 1; : : : ; 6, k = 0; : : : ;

^

k � 2, in [

^

k

k=0

R

k

n [

6

i=1

[

^

k�2

k=0

R

i

k

the expeted number

of sites is small enough to be also aeptable for our purposes.

Proposition 4. Given a site q in

^

R � [

6

i=1

R

i

0

, let N(q) be the number

of Voronoi neighbors in R nR

�2

of q. The expeted value of

P

q2

^

R

N(q) is

bounded above by

O(n

2=3

� (LG(n))

4

):

Proof. Let m̂ be the oor of n

1=3

� (LG(n))

�1

and assume R has been divided

into m̂

3

equal-sized ubes. LetB be one suh ube and assume B has nonempty

intersetion with

^

R.

Let M be as in Proposition 2, and let B

0

be the region in R whih is the

union of B and the ells in the �rst M � LG(n) ontiguous layers of ells that

surround B.

Given q in B let N

0

(q) be the number of Voronoi neighbors in B

0

of q.

Let F denote the event that all sites in B are losed.

We de�ne several probabilities and random variables relating to B as follows:

P

1

� Probability that F ours.

P

2

� Probability that F does not our.

T � Value of

P

q2B

N(q).

T

1

� Value of

P

q2B

N(q) given that F ours.

T

2

� Value of

P

q2B

N(q) given that F does not our.

T

0

� Value of

P

q2B

N

0

(q).

T

0

1

� Value of

P

q2B

N

0

(q) given that F ours.

T

0

2

� Value of

P

q2B

N

0

(q) given that F does not our.

W � Number of sites in B.

W

0

� Number of sites in B

0

.

In what follows, given a random variable X, E(X) and V AR(X) denote the

expeted value and variane of X, respetively.

We note that sine W

0

is binomially distributed then V AR(W

0

) < E(W

0

).

Thus,

E(T

0

) � E(W �W

0

) � E((W

0

)

2

) = (E(W

0

))

2

+ V AR(W

0

)

< (E(W

0

))

2

+ E(W

0

) = O(((LG(n))

3

)

2

) +O((LG(n))

3

)

= O((LG(n))

6

):

From Proposition 3, there exist positive onstants M

1

and M

2

independent of

n, suh that P

2

�M

1

� exp(�M

2

� (LG(n))

2

) � n. Thus, P

1

approahes 1 as n

inreases, and sine E(T

0

) = P

1

�E(T

0

1

) + P

2

�E(T

0

2

), we must have that

E(T

0

1

) = (E(T

0

)� P

2

� E(T

0

2

))=P

1

9



� E(T

0

)=P

1

= O((LG(n))

6

)=P

1

= O((LG(n))

6

):

But, from Proposition 2, T

1

� T

0

1

, so that

E(T

1

) � E(T

0

1

) � O((LG(n))

6

):

Thus,

E(T ) = P

1

� E(T

1

) + P

2

� E(T

2

)

� O((LG(n))

6

) + P

2

� n

2

= O((LG(n))

6

):

Finally, sine the number of ubes suh as B is O(n

2=3

� (LG(n))

�2

), it follows

that the expeted value of

P

q2

^

R

N(q) is bounded above by

O(n

2=3

� (LG(n))

�2

) �O((LG(n))

6

) = O(n

2=3

� (LG(n))

4

);

whih ompletes the proof of the proposition.

Proposition 5. Given i, k, 1 � i � 6, 1 � k �

^

k � 2, and a site q in R

i

k

,

let N(q) be the number of Voronoi neighbors in [

^

k

l=0

R

l

n [

k�1

l=0

R

i

l

of q. For

onstants M , M

0

> 0 independent of i, k and n, if 

00

� (2 +

p

2) �M then the

expeted value of

P

q2R

i

k

N(q) is bounded above by

M

0

� 2

�k

� n

2=3

� (LG

0

(n))

2

:

Proof. De�ne

^

R

i

k

, a nonempty subset of R that ontains R

i

k

, as follows:

^

R

i

k

� fx 2 R : lell � 2

�k+1

� dist(x; f

i

) < lell � 2

�k+2

g:

Let m̂ be the oor of n

1=3

� (2

k=2

� LG

0

(n))

�1

and assume

^

R

i

k

has been divided

into m̂

2

equal-sized slabs of thikness 2

�k+1

. Let

~

B be one suh slab and

assume B �

~

B \ R

i

k

is not empty.

Let M be as in Proposition 2, let

^

B be the union of the ells in the �rst

M � 2

k=2

� LG

0

(n) ontiguous layers of ells that surround B, and let B

0

be the

region in R whih is the union of B and

^

B \ ([

^

k

l=0

R

l

n [

k�1

l=0

R

i

l

).

We ompute the expeted number of sites in B

0

.



00

� (2 +

p

2) �M and 

0

�  imply that



00

� 2

k=2

� LG

0

(n)�M � 2

k=2

� LG

0

(n) � 

00

� 2

(k�1)=2

� LG

k�1

(n);

so that B

0

is ontained in [

^

k

l=k

R

l

and therefore, for some onstant M

00

> 0

independent of i, k and n, has a volume bounded above by

(M

00

� 2

k=2

� LG

0

(n))

2

� ((

P

^

k�1

l=k

2

�l+1

) + 2

�

^

k+2

) � vell

= (M

00

)

2

� 2

k

� (LG

0

(n))

2

� (2

�k+2

) � vell

= 4 � (M

00

)

2

� (LG

0

(n))

2

� vell:

10



Thus, 4 � (M

00

)

2

� (LG

0

(n))

2

is an upper bound for the expeted number of sites

in B

0

.

Using arguments similar to those employed in the proof of Proposition 4, we

an now show that for some onstant M

0

> 0 independent of i, k and n, the

expeted value of

P

q2B

N(q) is bounded above by M

0

� (LG

0

(n))

4

. Therefore,

sine n

2=3

� (2

k=2

� LG

0

(n))

�2

is an upper bound for the number of slabs suh

as

~

B, it follows that the expeted value of

P

q2R

i

k

N(q) is bounded above by

n

2=3

� (2

k=2

� LG

0

(n))

�2

�M

0

� (LG

0

(n))

4

=M

0

� 2

�k

� n

2=3

� (LG

0

(n))

2

;

whih ompletes the proof of the proposition.

Proposition 6. The expeted number of sites in [

^

k

l=

^

k�1

R

l

is bounded above

by

384 � (

00

� LG

0

(n))

2

:

Proof. Sine

^

k is the largest integer k

0

for whih

2

k

0

=2

� 

00

� LG

0

(n) � 2

�1

� n

1=3

;

we must have that the volume of [

^

k

l=

^

k�1

R

l

is bounded above by

6 � (2 � 2

(

^

k+1)=2

� 

00

� LG

0

(n))

2

� (2

�

^

k+2

+ 2

�

^

k+2

) � vell

= 6 � (4 � 2

^

k+1

� (

00

� LG

0

(n))

2

) � (2 � 2

�

^

k+2

) � vell

= 384 � (

00

� LG

0

(n))

2

� vell;

whih ompletes the proof of the proposition.

Proposition 7. The expeted number of sites in R

0

n [

6

i=1

R

i

0

is bounded

above by

12 � n

1=3

� (

00

� LG(n))

2

;

and in [

^

k�2

l=1

R

l

n [

6

i=1

([

^

k�2

l=1

R

i

l

) by

(1 +

p

2) � 48 � n

1=3

� 

00

� LG

0

(n):

Proof. From the de�nitions, the volume of R

0

n [

6

i=1

R

i

0

is bounded above by

12 � n

1=3

� (

00

� LG(n))

2

� vell;

and that of [

^

k�2

l=1

R

l

n [

6

i=1

([

^

k�2

l=1

R

i

l

) by

P

^

k�2

l=1

2 � 12 � n

1=3

� 2

l=2

� 

00

� LG

0

(n) � 2

�l+1

� vell

=

P

^

k�2

l=1

48 � n

1=3

� 2

�l=2

� 

00

� LG

0

(n) � vell

� (1 +

p

2) � 48 � n

1=3

� 

00

� LG

0

(n) � vell:

11



The proposition now follows.

Proof of the theorem. It suÆes to prove the theorem for the 2�dimensional

faes or faets, sine from Klee (1966) and the Euler formula the number of ver-

ties and edges of a 3-dimensional polyhedron is bounded above by a onstant

times the number of faets of the polyhedron. As mentioned above, the proof

onsists of omputing where neessary the expeted number of Voronoi neigh-

bor pairs within and between the regions R

i

k

, i = 1; : : : ; 6, k = 0; : : : ;

^

k � 2,

[

^

k

k=0

R

k

n [

6

i=1

[

^

k�2

k=0

R

i

k

, R

�1

nR

�2

and R

�2

.

To this end, let p be a site in R

�1

.

Sine for eah site q in [

^

k

k=1

R

k

, dist(q; R

�1

) � lell � (LG(n)� 2), from Bent-

ley, et al. (1980) we must have that onstantsM

0

1

andM

0

2

> 0 exist independent

of n and p, suh that the probability that p has Voronoi neighbors in [

^

k

k=1

R

k

is bounded above by

M

0

1

� exp(�M

0

2

� (LG(n))

3

):

Therefore, the expeted number of faets of the Voronoi diagram for S that

are shared by Voronoi polyhedra of sites in R

�1

with Voronoi polyhedra of

sites in [

^

k

k=1

R

k

is bounded above by

n � n �M

0

1

� exp(�M

0

2

� (LG(n))

3

):

Similarly, positive onstants M

00

1

and M

00

2

exist independent of n, suh that

the expeted number of faets of the Voronoi diagram for S that are shared

by Voronoi polyhedra of sites in R

�2

with Voronoi polyhedra of sites in R

0

is

bounded above by

n � n �M

00

1

� exp(�M

00

2

� (LG(n))

3

):

For eah i, i = 1; : : : ; 6, let R

i

�1

denote the possibly empty subset of R

�1

nR

�2

fx 2 R

�1

nR

�2

: dist(x; f

j

) � lell � (1 + 

00

) � LG(n); j = 1; : : : ; 6; j 6= ig:

Given i, 1 � i � 6, let p be a site in R

i

�1

.

Sine for eah site q in R

0

n [

6

j=1

R

j

0

, dist(q; R

i

�1

) � lell � LG(n), from Bentley,

et al. (1980) we must have again that onstants M

000

1

and M

000

2

> 0 exist inde-

pendent of i, n and p, suh that the probability that p has Voronoi neighbors

in R

0

n [

6

j=1

R

j

0

is bounded above by

M

000

1

� exp(�M

000

2

� (LG(n))

3

):

Also, as in the proof of Proposition 7, it follows that the expeted number

of sites in (R

�1

nR

�2

) n [

6

j=1

R

j

�1

is bounded above by 12 � n

1=3

� (

00

� LG(n))

2

.

Thus, sine the number of sites in (R

0

n [

6

j=1

R

j

0

) [ ((R

�1

nR

�2

) n [

6

j=1

R

j

�1

) is

12



binomially distributed so that its variane is less than its expeted value,

it must follow from Proposition 7 that the expeted number of faets of

the Voronoi diagram for S that are shared by Voronoi polyhedra of sites in

R

�1

nR

�2

with Voronoi polyhedra of sites in R

0

n [

6

j=1

R

j

0

is bounded above

by

n � n �M

000

1

� exp(�M

000

2

� (LG(n))

3

) +

(24 � n

1=3

� (

00

� LG(n))

2

)

2

+ 24 � n

1=3

� (

00

� LG(n))

2

:

Therefore, sine the number of sites in [

^

k

l=0

R

l

n [

6

i=1

[

^

k�2

l=0

R

i

l

is also binomially

distributed so that its variane is also less than its expeted value, it must

follow from Propositions 4, 5, 6 and 7 that onstants M

0

and 

00

> 0 exist

independent of n suh that the expeted number of faets of the Voronoi

diagram for S that are also faets of Voronoi polyhedra of sites in R nR

�1

is

bounded above by

O(n

2=3

� (LG(n))

4

) + 6 �

^

k�2

X

k=1

M

0

� 2

�k

� n

2=3

� (LG

0

(n))

2

+

(384 � (

00

� LG

0

(n))

2

+ 12 � n

1=3

� (

00

� LG(n))

2

+

(1 +

p

2) � 48 � n

1=3

� 

00

� LG

0

(n))

2

+

384 � (

00

� LG

0

(n))

2

+ 12 � n

1=3

� (

00

� LG(n))

2

+

(1 +

p

2) � 48 � n

1=3

� 

00

� LG

0

(n) +

n

2

�M

0

1

� exp(�M

0

2

� (LG(n))

3

) +

n

2

�M

00

1

� exp(�M

00

2

� (LG(n))

3

) +

n

2

�M

000

1

� exp(�M

000

2

� (LG(n))

3

) +

(24 � n

1=3

� (

00

� LG(n))

2

)

2

+ 24 � n

1=3

� (

00

� LG(n))

2

= M � n

2=3

� (LG(n))

4

= M � n

2=3

� ( � logn)

4

;

whereM is a funtion of n,  and 

0

that dereases for �xed  and 

0

, 0 <  � 

0

.

This ompletes the proof of the theorem.

The following orollary is a diret onsequene of results in Bentley, et al.

(1980) and the theorem.

Corollary. O(n) is the expeted number of faes of the Voronoi diagram

for S.

Proof. From Bentley, et al. (1980) there exist positive onstants M

0

1

and M

0

2

13



independent of n suh that

O(1) + n �M

0

1

� exp(�M

0

2

� (LG(n))

3

)

is the expeted number of faes of the Voronoi diagram for S that are also faes

of the Voronoi polyhedron of any given site in R

�1

. Thus, from the theorem,

the expeted number of faes of the Voronoi diagram for S is

n � (O(1) + n �M

0

1

� exp(�M

0

2

� ( � logn)

3

) +O(n

2=3

� ( � logn)

4

) =M � n;

whereM is a funtion of n,  and 

0

that dereases for �xed  and 

0

, 0 <  � 

0

.

The geometrial nature of the proofs of the theorem and the orollary, and

the fat that O(n

2

) is the maximum number of faets that the Voronoi diagram

for a set of n sites in E

d

, d � 3, an have (see Klee (1980), Pashinger (1982),

Preparata (1977), Seidel (1982)), suggest the following onjeture. Here, it is

assumed that S is a set of n sites in E

d

, d > 3, hosen independently from a

uniform distribution in a d�dimensional hyperube R, and that R has been

divided into m

d

equal-sized ells, where m is the oor of n

1=d

.

Conjeture. For �xed d, O(n

1�1=d

� ( � logn)

d+1

) is an upper bound for the

expeted number of faets or (d� 1)�dimensional faes of the Voronoi diagram

for S that are also faets of Voronoi polyhedra of sites in the outermost LG(n)

layers of ells of R. Consequently, O(n) is the expeted number of faets of

the Voronoi diagram for S.

The following remark relates to the expeted number of faes of the onvex

hull of S.

Remark. From Bentley, et al. (1980) there exist positive onstants M

0

1

and

M

0

2

independent of n suh that the probability that the Voronoi polyhedron

of any site in R

�1

is unbounded is bounded above by

M

0

1

� exp(�M

0

2

� (LG(n))

3

):

From Proposition 3 and the de�nition of a losed site there exist positive

onstants M

1

and M

2

independent of n suh that the probability that the

Voronoi polyhedron of any site in [

6

i=1

[

^

k�2

k=0

R

i

k

is unbounded is bounded above

by

M

1

� exp(�M

2

� (LG(n))

2

):

Thus, from Propositions 6 and 7, Klee (1966) and the Euler formula, the

expeted number of faes of the onvex hull of S is bounded above by

n �M

0

1

� exp(�M

0

2

� (LG(n))

3

) + n �M

1

� exp(�M

2

� (LG(n))

2

) +
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384 � (

00

� LG

0

(n))

2

+ 12 � n

1=3

� (

00

� LG(n))

2

+

(1 +

p

2) � 48 � n

1=3

� 

00

� LG

0

(n)

= O(n

1=3

� (logn)

2

):

4. SUMMARY

Let S be a set of n sites hosen independently from a uniform distribution

in a d�dimensional hyperube R, and assume R has been divided into m

d

equal-sized ells, where m is the oor of n

1=d

. In addition, let  and 

0

be

positive numbers, and de�ne LG(n) as the oor of  � logn, where log denotes

the natural logarithm. Inuened by Bentley, Weide and Yao's work (1980),

we have shown that if d equals 3 then M � n

1�1=d

� ( � logn)

d+1

is an upper

bound for the expeted number of faets of the Voronoi diagram for S that are

also faets of Voronoi polyhedra of sites in the outermost LG(n) layers of ells

of R, where M is a funtion of n,  and 

0

that dereases for �xed  and 

0

,

0 <  � 

0

. Subsequently, from this result and results in Bentley, et al. (1980),

we have shown that O(n) is an upper bound for the expeted number of faets

of the Voronoi diagram for S. Aordingly, we have onjetured that similar

results hold for �xed d > 3, and from Klee (1966) and the Euler formula have

onluded that for d = 3, the same results hold for the 0� and 1�dimensional

faes of the Voronoi diagram for S.

Atually, without expliitly stating it, we have established the existene

of an expeted O(n) algorithm for onstruting Voronoi diagrams in three

dimensions. To see this, we note that for eah site in the outermost LG(n)

layers of ells of R, we have impliitly shown the feasibility of obtaining a

subset of S that ontains all of the Voronoi neighbors of the site. This is done

in suh a way that the expeted time involved in obtaining all suh subsets for

all suh sites is bounded above by M � n

2=3

� ( � logn)

4

, where M is a funtion

of n,  and 

0

that dereases for �xed  and 

0

, 0 <  � 

0

. Thus, sine the

intersetion of k half-spaes in 3�dimensional spae an be found in time

O(k � log k) (see Preparata and Muller (1979)), a omputation an be arried

out to show that the Voronoi polyhedra of the sites in the outermost LG(n)

layers of R an be found in at most

O(n

2=3

� ( � logn)

4

) � logn =M

0

� n

2=3

� ( � logn)

4

� logn

expeted time, where M

0

is a funtion of n,  and 

0

that dereases for �xed

 and 

0

, 0 <  � 

0

. This observation, together with results in Bentley, et al.

(1980), then shows the existene of the algorithm. We note that an implemen-

tation of this algorithm is urrently being tested at the National Institute of

Standards and Tehnology, and omputational results obtained from our tests

15



will be presented in a forthoming paper. It should also be noted that the

tehniques employed in this algorithm are quite di�erent from those used in

an expeted O(n) algorithm reently presented in Dwyer (1988) for onstrut-

ing Voronoi diagrams for point sets hosen uniformly from the d�dimensional

ball.
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